ARITH3(9.2) ARITH3(9.2)
NAME
add3, sub3, div3, mul3, eqpt3, closept3, dot3, cross3, len3, dist3,
unit3, midpt3, lerp3, reflect3, nearseg3, pldist3, vdiv3, vrem3, pn2f3,
ppp2f3, fff2p3, pdiv4, add4, sub4  operations on 3d points and planes
SYNOPSIS
#include <<libg.h>>
#include <<geometry.h>>
Point3 add3(Point3 a, Point3 b)
Point3 sub3(Point3 a, Point3 b)
Point3 div3(Point3 a, double b)
Point3 mul3(Point3 a, double b)
int eqpt3(Point3 p, Point3 q)
int closept3(Point3 p, Point3 q, double eps)
double dot3(Point3 p, Point3 q)
Point3 cross3(Point3 p, Point3 q)
double len3(Point3 p)
double dist3(Point3 p, Point3 q)
Point3 unit3(Point3 p)
Point3 midpt3(Point3 p, Point3 q)
Point3 lerp3(Point3 p, Point3 q, double alpha)
Point3 reflect3(Point3 p, Point3 p0, Point3 p1)
Point3 nearseg3(Point3 p0, Point3 p1, Point3 testp)
double pldist3(Point3 p, Point3 p0, Point3 p1)
double vdiv3(Point3 a, Point3 b)
Point3 vrem3(Point3 a, Point3 b)
Point3 pn2f3(Point3 p, Point3 n)
Point3 ppp2f3(Point3 p0, Point3 p1, Point3 p2)
Point3 fff2p3(Point3 f0, Point3 f1, Point3 f2)
Point3 pdiv4(Point3 a)
Point3 add4(Point3 a, Point3 b)
Point3 sub4(Point3 a, Point3 b)
DESCRIPTION
These routines do arithmetic on points and planes in affine or projec
tive 3space. Type Point3 is
typedef struct Point3 Point3;
struct Point3{
double x, y, z, w;
};
Routines whose names end in 3 operate on vectors or ordinary points in
affine 3space, represented by their Euclidean (x,y,z) coordinates.
(They assume w=1 in their arguments, and set w=1 in their results.)
Name Description
add3 Add the coordinates of two points.
sub3 Subtract coordinates of two points.
mul3 Multiply coordinates by a scalar.
div3 Divide coordinates by a scalar.
eqpt3 Test two points for exact equality.
closept3
Is the distance between two points smaller than eps?
dot3 Dot product.
cross3 Cross product.
len3 Distance to the origin.
dist3 Distance between two points.
unit3 A unit vector parallel to p.
midpt3 The midpoint of line segment pq.
lerp3 Linear interpolation between p and q.
reflect3
The reflection of point p in the segment joining p0 and p1.
nearseg3
The closest point to testp on segment p0 p1.
pldist3
The distance from p to segment p0 p1.
vdiv3 Vector divide  the length of the component of a parallel to b,
in units of the length of b.
vrem3 Vector remainder  the component of a perpendicular to b.
Ignoring roundoff, we have eqpt3(add3(mul3(b, vdiv3(a, b)),
vrem3(a, b)), a).
The following routines convert amongst various representations of
points and planes. Planes are represented identically to points, by
duality; a point p is on a plane q whenever
p.x*q.x+p.y*q.y+p.z*q.z+p.w*q.w=0. Although when dealing with affine
points we assume p.w=1, we can't make the same assumption for planes.
The names of these routines are extracryptic. They contain an f (for
`face') to indicate a plane, p for a point and n for a normal vector.
The number 2 abbreviates the word `to.' The number 3 reminds us, as
before, that we're dealing with affine points. Thus pn2f3 takes a
point and a normal vector and returns the corresponding plane.
Name Description
pn2f3 Compute the plane passing through p with normal n.
ppp2f3 Compute the plane passing through three points.
fff2p3 Compute the intersection point of three planes.
The names of the following routines end in 4 because they operate on
points in projective 4space, represented by their homogeneous coordi
nates.
pdiv4 Perspective division. Divide p.w into p's coordinates, convert
ing to affine coordinates. If p.w is zero, the result is the
same as the argument.
add4 Add the coordinates of two points.
sub4 Subtract the coordinates of two points.
SOURCE
/sys/src/libgeometry
SEE ALSO
tstack(9.2)
BUGS
Spotty coverage.
ARITH3(9.2)
