Switch to SpeakEasy.net DSL

The Modular Manual Browser

Home Page
Manual: (OpenBSD-3.6)
Apropos / Subsearch:
optional field

TERMINFO(5)                File Formats               TERMINFO(5)

       terminfo - terminal capability data base


       Terminfo  is  a  data  base  describing terminals, used by
       screen-oriented  programs  such  as  vi(1),  rogue(1)  and
       libraries such as curses(3).  Terminfo describes terminals
       by giving a set of capabilities which they have, by speci-
       fying  how to perform screen operations, and by specifying
       padding requirements and initialization sequences.

       Entries in terminfo consist of a sequence of `,' separated
       fields  (embedded  commas may be escaped with a  backslash
       or notated as \072).  White space after the `,'  separator
       is  ignored.   The first entry for each terminal gives the
       names which are known for the terminal, separated  by  `|'
       characters.   The  first  name  given  is  the most common
       abbreviation for the terminal, the last name given  should
       be  a  long  name  fully identifying the terminal, and all
       others are understood as synonyms for the  terminal  name.
       All names but the last should be in lower case and contain
       no blanks; the last name may well contain upper  case  and
       blanks for readability.

       Terminal names (except for the last, verbose entry) should
       be chosen using the following conventions.  The particular
       piece  of  hardware  making  up the terminal should have a
       root name, thus ``hp2621''.  This name should not  contain
       hyphens.  Modes that the hardware can be in, or user pref-
       erences, should be indicated by appending a hyphen  and  a
       mode  suffix.   Thus,  a vt100 in 132 column mode would be
       vt100-w.  The following suffixes should be used where pos-

      Suffix                  Meaning                   Example
      -nn      Number of lines on the screen            aaa-60
      -np      Number of pages of memory                c100-4p
      -am      With automargins (usually the default)   vt100-am
      -m       Mono mode; suppress color                ansi-m
      -mc      Magic cookie; spaces when highlighting   wy30-mc
      -na      No arrow keys (leave them in local)      c100-na
      -nam     Without automatic margins                vt100-nam
      -nl      No status line                           att4415-nl
      -ns      No status line                           hp2626-ns
      -rv      Reverse video                            c100-rv
      -s       Enable status line                       vt100-s
      -vb      Use visible bell instead of beep         wy370-vb
      -w       Wide mode (> 80 columns, usually 132)    vt100-w

       For  more  on terminal naming conventions, see the term(7)


TERMINFO(5)                File Formats               TERMINFO(5)

       manual page.

       The following is a  complete  table  of  the  capabilities
       included  in a terminfo description block and available to
       terminfo-using code.  In each line of the table,

       The variable is the name by which the programmer  (at  the
       terminfo level) accesses the capability.

       The  capname  is  the  short  name used in the text of the
       database, and is used by a person updating  the  database.
       Whenever  possible,  capnames are chosen to be the same as
       or similar to the ANSI X3.64-1979 standard (now superseded
       by  ECMA-48,  which uses identical or very similar names).
       Semantics are also intended to match those of the specifi-

       The  termcap code is the old termcap capability name (some
       capabilities are new, and have names which termcap did not

       Capability  names have no hard length limit, but an infor-
       mal limit of 5 characters has been adopted  to  keep  them
       short  and  to  allow  the tabs in the source file Caps to
       line up nicely.

       Finally, the description  field  attempts  to  convey  the
       semantics  of  the capability.  You may find some codes in
       the description field:

       (P)    indicates that padding may be specified

       #[1-9] in the description field indicates that the  string
              is passed through tparm with parms as given (#i).

       (P*)   indicates  that  padding  may vary in proportion to
              the number of lines affected

       (#i)   indicates the ith parameter.

       These are the boolean capabilities:

               Variable          Cap-  TCap      Description
               Booleans          name  Code
       auto_left_margin          bw    bw    cub1 wraps from col-
                                             umn 0 to last column
       auto_right_margin         am    am    terminal has auto-
                                             matic margins
       back_color_erase          bce   ut    screen erased with
                                             background color


TERMINFO(5)                File Formats               TERMINFO(5)

       can_change                ccc   cc    terminal can re-
                                             define existing col-
       ceol_standout_glitch      xhp   xs    standout not erased
                                             by overwriting (hp)
       col_addr_glitch           xhpa  YA    only positive motion
                                             for hpa/mhpa caps
       cpi_changes_res           cpix  YF    changing character
                                             pitch changes reso-
       cr_cancels_micro_mode     crxm  YB    using cr turns off
                                             micro mode
       dest_tabs_magic_smso      xt    xt    tabs destructive,
                                             magic so char
       eat_newline_glitch        xenl  xn    newline ignored
                                             after 80 cols (con-
       erase_overstrike          eo    eo    can erase over-
                                             strikes with a blank
       generic_type              gn    gn    generic line type
       hard_copy                 hc    hc    hardcopy terminal
       hard_cursor               chts  HC    cursor is hard to
       has_meta_key              km    km    Has a meta key
                                             (shift, sets parity
       has_print_wheel           daisy YC    printer needs opera-
                                             tor to change char-
                                             acter set
       has_status_line           hs    hs    has extra status
       hue_lightness_saturation  hls   hl    terminal uses only
                                             HLS color notation
       insert_null_glitch        in    in    insert mode distin-
                                             guishes nulls
       lpi_changes_res           lpix  YG    changing line pitch
                                             changes resolution
       memory_above              da    da    display may be
                                             retained above the
       memory_below              db    db    display may be
                                             retained below the
       move_insert_mode          mir   mi    safe to move while
                                             in insert mode
       move_standout_mode        msgr  ms    safe to move while
                                             in standout mode
       needs_xon_xoff            nxon  nx    padding won't work,
                                             xon/xoff required
       no_esc_ctlc               xsb   xb    beehive (f1=escape,
                                             f2=ctrl C)


TERMINFO(5)                File Formats               TERMINFO(5)

       no_pad_char               npc   NP    pad character does
                                             not exist
       non_dest_scroll_region    ndscr ND    scrolling region is
       non_rev_rmcup             nrrmc NR    smcup does not
                                             reverse rmcup
       over_strike               os    os    terminal can over-
       prtr_silent               mc5i  5i    printer won't echo
                                             on screen
       row_addr_glitch           xvpa  YD    only positive motion
                                             for vpa/mvpa caps
       semi_auto_right_margin    sam   YE    printing in last
                                             column causes cr
       status_line_esc_ok        eslok es    escape can be used
                                             on the status line
       tilde_glitch              hz    hz    can't print ~'s
       transparent_underline     ul    ul    underline character
       xon_xoff                  xon   xo    terminal uses
                                             xon/xoff handshaking

       These are the numeric capabilities:

            Variable         Cap-     TCap       Description
             Numeric         name     Code
       columns               cols     co     number of columns in
                                             a line
       init_tabs             it       it     tabs initially every
                                             # spaces
       label_height          lh       lh     rows in each label
       label_width           lw       lw     columns in each
       lines                 lines    li     number of lines on
                                             screen or page
       lines_of_memory       lm       lm     lines of memory if >
                                             line. 0 means varies
       magic_cookie_glitch   xmc      sg     number of blank
                                             characters left by
                                             smso or rmso
       max_attributes        ma       ma     maximum combined
                                             attributes terminal
                                             can handle
       max_colors            colors   Co     maximum number of
                                             colors on screen
       max_pairs             pairs    pa     maximum number of
                                             color-pairs on the
       maximum_windows       wnum     MW     maximum number of
                                             defineable windows


TERMINFO(5)                File Formats               TERMINFO(5)

       no_color_video        ncv      NC     video attributes
                                             that can't be used
                                             with colors
       num_labels            nlab     Nl     number of labels on
       padding_baud_rate     pb       pb     lowest baud rate
                                             where padding needed
       virtual_terminal      vt       vt     virtual terminal
                                             number (CB/unix)
       width_status_line     wsl      ws     number of columns in
                                             status line

       The following numeric  capabilities  are  present  in  the
       SVr4.0  term  structure, but are not yet documented in the
       man page.  They came in with SVr4's printer support.

             Variable         Cap-    TCap       Description
             Numeric          name    Code
       bit_image_entwining    bitwin  Yo     number of passes for
                                             each bit-image row
       bit_image_type         bitype  Yp     type of bit-image
       buffer_capacity        bufsz   Ya     numbers of bytes
                                             buffered before
       buttons                btns    BT     number of buttons on
       dot_horz_spacing       spinh   Yc     spacing of dots hor-
                                             izontally in dots
                                             per inch
       dot_vert_spacing       spinv   Yb     spacing of pins ver-
                                             tically in pins per
       max_micro_address      maddr   Yd     maximum value in
       max_micro_jump         mjump   Ye     maximum value in
       micro_col_size         mcs     Yf     character step size
                                             when in micro mode
       micro_line_size        mls     Yg     line step size when
                                             in micro mode
       number_of_pins         npins   Yh     numbers of pins in
       output_res_char        orc     Yi     horizontal resolu-
                                             tion in units per
       output_res_horz_inch   orhi    Yk     horizontal resolu-
                                             tion in units per
       output_res_line        orl     Yj     vertical resolution
                                             in units per line
       output_res_vert_inch   orvi    Yl     vertical resolution
                                             in units per inch


TERMINFO(5)                File Formats               TERMINFO(5)

       print_rate             cps     Ym     print rate in char-
                                             acters per second
       wide_char_size         widcs   Yn     character step size
                                             when in double wide

       These are the string capabilities:

               Variable          Cap-   TCap     Description
                String           name   Code
       acs_chars                 acsc   ac   graphics charset
                                             pairs, based on
       back_tab                  cbt    bt   back tab (P)
       bell                      bel    bl   audible signal
                                             (bell) (P)
       carriage_return           cr     cr   carriage return (P*)
       change_char_pitch         cpi    ZA   Change number of
                                             characters per inch
       change_line_pitch         lpi    ZB   Change number of
                                             lines per inch
       change_res_horz           chr    ZC   Change horizontal
       change_res_vert           cvr    ZD   Change vertical res-
       change_scroll_region      csr    cs   change region to
                                             line #1 to line #2
       char_padding              rmp    rP   like ip but when in
                                             insert mode
       clear_all_tabs            tbc    ct   clear all tab stops
       clear_margins             mgc    MC   clear right and left
                                             soft margins
       clear_screen              clear  cl   clear screen and
                                             home cursor (P*)
       clr_bol                   el1    cb   Clear to beginning
                                             of line
       clr_eol                   el     ce   clear to end of line
       clr_eos                   ed     cd   clear to end of
                                             screen (P*)
       column_address            hpa    ch   horizontal position
                                             #1, absolute (P)
       command_character         cmdch  CC   terminal settable
                                             cmd character in
                                             prototype !?
       create_window             cwin   CW   define a window #1
                                             from #2,#3 to #4,#5
       cursor_address            cup    cm   move to row #1
                                             columns #2
       cursor_down               cud1   do   down one line


TERMINFO(5)                File Formats               TERMINFO(5)

       cursor_home               home   ho   home cursor (if no
       cursor_invisible          civis  vi   make cursor invisi-
       cursor_left               cub1   le   move left one space
       cursor_mem_address        mrcup  CM   memory relative cur-
                                             sor addressing
       cursor_normal             cnorm  ve   make cursor appear
                                             normal (undo
       cursor_right              cuf1   nd   non-destructive
                                             space (move right
                                             one space)
       cursor_to_ll              ll     ll   last line, first
                                             column (if no cup)
       cursor_up                 cuu1   up   up one line
       cursor_visible            cvvis  vs   make cursor very
       define_char               defc   ZE   Define a character
       delete_character          dch1   dc   delete character
       delete_line               dl1    dl   delete line (P*)
       dial_phone                dial   DI   dial number #1
       dis_status_line           dsl    ds   disable status line
       display_clock             dclk   DK   display clock at
       down_half_line            hd     hd   half a line down
       ena_acs                   enacs  eA   enable alternate
                                             char set
       enter_alt_charset_mode    smacs  as   start alternate
                                             character set (P)
       enter_am_mode             smam   SA   turn on automatic
       enter_blink_mode          blink  mb   turn on blinking
       enter_bold_mode           bold   md   turn on bold (extra
                                             bright) mode
       enter_ca_mode             smcup  ti   string to start pro-
                                             grams using cup
       enter_delete_mode         smdc   dm   enter delete mode
       enter_dim_mode            dim    mh   turn on half-bright
       enter_doublewide_mode     swidm  ZF   Enter double-wide
       enter_draft_quality       sdrfq  ZG   Enter draft-quality
       enter_insert_mode         smir   im   enter insert mode
       enter_italics_mode        sitm   ZH   Enter italic mode
       enter_leftward_mode       slm    ZI   Start leftward car-
                                             riage motion
       enter_micro_mode          smicm  ZJ   Start micro-motion
       enter_near_letter_quality snlq   ZK   Enter NLQ mode


TERMINFO(5)                File Formats               TERMINFO(5)

       enter_normal_quality      snrmq  ZL   Enter normal-quality
       enter_protected_mode      prot   mp   turn on protected
       enter_reverse_mode        rev    mr   turn on reverse
                                             video mode
       enter_secure_mode         invis  mk   turn on blank mode
                                             (characters invisi-
       enter_shadow_mode         sshm   ZM   Enter shadow-print
       enter_standout_mode       smso   so   begin standout mode
       enter_subscript_mode      ssubm  ZN   Enter subscript mode
       enter_superscript_mode    ssupm  ZO   Enter superscript
       enter_underline_mode      smul   us   begin underline mode
       enter_upward_mode         sum    ZP   Start upward car-
                                             riage motion
       enter_xon_mode            smxon  SX   turn on xon/xoff
       erase_chars               ech    ec   erase #1 characters
       exit_alt_charset_mode     rmacs  ae   end alternate char-
                                             acter set (P)
       exit_am_mode              rmam   RA   turn off automatic
       exit_attribute_mode       sgr0   me   turn off all
       exit_ca_mode              rmcup  te   strings to end pro-
                                             grams using cup
       exit_delete_mode          rmdc   ed   end delete mode
       exit_doublewide_mode      rwidm  ZQ   End double-wide mode
       exit_insert_mode          rmir   ei   exit insert mode
       exit_italics_mode         ritm   ZR   End italic mode
       exit_leftward_mode        rlm    ZS   End left-motion mode
       exit_micro_mode           rmicm  ZT   End micro-motion
       exit_shadow_mode          rshm   ZU   End shadow-print
       exit_standout_mode        rmso   se   exit standout mode
       exit_subscript_mode       rsubm  ZV   End subscript mode
       exit_superscript_mode     rsupm  ZW   End superscript mode
       exit_underline_mode       rmul   ue   exit underline mode
       exit_upward_mode          rum    ZX   End reverse charac-
                                             ter motion
       exit_xon_mode             rmxon  RX   turn off xon/xoff
       fixed_pause               pause  PA   pause for 2-3 sec-
       flash_hook                hook   fh   flash switch hook
       flash_screen              flash  vb   visible bell (may
                                             not move cursor)


TERMINFO(5)                File Formats               TERMINFO(5)

       form_feed                 ff     ff   hardcopy terminal
                                             page eject (P*)
       from_status_line          fsl    fs   return from status
       goto_window               wingo  WG   go to window #1
       hangup                    hup    HU   hang-up phone
       init_1string              is1    i1   initialization
       init_2string              is2    is   initialization
       init_3string              is3    i3   initialization
       init_file                 if     if   name of initializa-
                                             tion file
       init_prog                 iprog  iP   path name of program
                                             for initialization
       initialize_color          initc  Ic   initialize color #1
                                             to (#2,#3,#4)
       initialize_pair           initp  Ip   Initialize color
                                             pair #1 to
       insert_character          ich1   ic   insert character (P)
       insert_line               il1    al   insert line (P*)
       insert_padding            ip     ip   insert padding after
                                             inserted character
       key_a1                    ka1    K1   upper left of keypad
       key_a3                    ka3    K3   upper right of key-
       key_b2                    kb2    K2   center of keypad
       key_backspace             kbs    kb   backspace key
       key_beg                   kbeg   @1   begin key
       key_btab                  kcbt   kB   back-tab key
       key_c1                    kc1    K4   lower left of keypad
       key_c3                    kc3    K5   lower right of key-
       key_cancel                kcan   @2   cancel key
       key_catab                 ktbc   ka   clear-all-tabs key
       key_clear                 kclr   kC   clear-screen or
                                             erase key
       key_close                 kclo   @3   close key
       key_command               kcmd   @4   command key
       key_copy                  kcpy   @5   copy key
       key_create                kcrt   @6   create key
       key_ctab                  kctab  kt   clear-tab key
       key_dc                    kdch1  kD   delete-character key
       key_dl                    kdl1   kL   delete-line key
       key_down                  kcud1  kd   down-arrow key
       key_eic                   krmir  kM   sent by rmir or smir
                                             in insert mode
       key_end                   kend   @7   end key
       key_enter                 kent   @8   enter/send key


TERMINFO(5)                File Formats               TERMINFO(5)

       key_eol                   kel    kE   clear-to-end-of-line
       key_eos                   ked    kS   clear-to-end-of-
                                             screen key
       key_exit                  kext   @9   exit key
       key_f0                    kf0    k0   F0 function key
       key_f1                    kf1    k1   F1 function key
       key_f10                   kf10   k;   F10 function key
       key_f11                   kf11   F1   F11 function key
       key_f12                   kf12   F2   F12 function key
       key_f13                   kf13   F3   F13 function key
       key_f14                   kf14   F4   F14 function key
       key_f15                   kf15   F5   F15 function key
       key_f16                   kf16   F6   F16 function key
       key_f17                   kf17   F7   F17 function key
       key_f18                   kf18   F8   F18 function key
       key_f19                   kf19   F9   F19 function key
       key_f2                    kf2    k2   F2 function key
       key_f20                   kf20   FA   F20 function key
       key_f21                   kf21   FB   F21 function key
       key_f22                   kf22   FC   F22 function key
       key_f23                   kf23   FD   F23 function key
       key_f24                   kf24   FE   F24 function key
       key_f25                   kf25   FF   F25 function key
       key_f26                   kf26   FG   F26 function key
       key_f27                   kf27   FH   F27 function key
       key_f28                   kf28   FI   F28 function key
       key_f29                   kf29   FJ   F29 function key
       key_f3                    kf3    k3   F3 function key
       key_f30                   kf30   FK   F30 function key
       key_f31                   kf31   FL   F31 function key
       key_f32                   kf32   FM   F32 function key
       key_f33                   kf33   FN   F33 function key
       key_f34                   kf34   FO   F34 function key
       key_f35                   kf35   FP   F35 function key
       key_f36                   kf36   FQ   F36 function key
       key_f37                   kf37   FR   F37 function key
       key_f38                   kf38   FS   F38 function key
       key_f39                   kf39   FT   F39 function key
       key_f4                    kf4    k4   F4 function key
       key_f40                   kf40   FU   F40 function key
       key_f41                   kf41   FV   F41 function key
       key_f42                   kf42   FW   F42 function key
       key_f43                   kf43   FX   F43 function key
       key_f44                   kf44   FY   F44 function key
       key_f45                   kf45   FZ   F45 function key
       key_f46                   kf46   Fa   F46 function key
       key_f47                   kf47   Fb   F47 function key
       key_f48                   kf48   Fc   F48 function key
       key_f49                   kf49   Fd   F49 function key
       key_f5                    kf5    k5   F5 function key
       key_f50                   kf50   Fe   F50 function key
       key_f51                   kf51   Ff   F51 function key


TERMINFO(5)                File Formats               TERMINFO(5)

       key_f52                   kf52   Fg   F52 function key
       key_f53                   kf53   Fh   F53 function key
       key_f54                   kf54   Fi   F54 function key
       key_f55                   kf55   Fj   F55 function key
       key_f56                   kf56   Fk   F56 function key
       key_f57                   kf57   Fl   F57 function key
       key_f58                   kf58   Fm   F58 function key
       key_f59                   kf59   Fn   F59 function key
       key_f6                    kf6    k6   F6 function key
       key_f60                   kf60   Fo   F60 function key
       key_f61                   kf61   Fp   F61 function key
       key_f62                   kf62   Fq   F62 function key
       key_f63                   kf63   Fr   F63 function key
       key_f7                    kf7    k7   F7 function key
       key_f8                    kf8    k8   F8 function key
       key_f9                    kf9    k9   F9 function key
       key_find                  kfnd   @0   find key
       key_help                  khlp   %1   help key
       key_home                  khome  kh   home key
       key_ic                    kich1  kI   insert-character key
       key_il                    kil1   kA   insert-line key
       key_left                  kcub1  kl   left-arrow key
       key_ll                    kll    kH   lower-left key (home
       key_mark                  kmrk   %2   mark key
       key_message               kmsg   %3   message key
       key_move                  kmov   %4   move key
       key_next                  knxt   %5   next key
       key_npage                 knp    kN   next-page key
       key_open                  kopn   %6   open key
       key_options               kopt   %7   options key
       key_ppage                 kpp    kP   previous-page key
       key_previous              kprv   %8   previous key
       key_print                 kprt   %9   print key
       key_redo                  krdo   %0   redo key
       key_reference             kref   &1   reference key
       key_refresh               krfr   &2   refresh key
       key_replace               krpl   &3   replace key
       key_restart               krst   &4   restart key
       key_resume                kres   &5   resume key
       key_right                 kcuf1  kr   right-arrow key
       key_save                  ksav   &6   save key
       key_sbeg                  kBEG   &9   shifted begin key
       key_scancel               kCAN   &0   shifted cancel key
       key_scommand              kCMD   *1   shifted command key
       key_scopy                 kCPY   *2   shifted copy key
       key_screate               kCRT   *3   shifted create key
       key_sdc                   kDC    *4   shifted delete-char-
                                             acter key
       key_sdl                   kDL    *5   shifted delete-line
       key_select                kslt   *6   select key
       key_send                  kEND   *7   shifted end key


TERMINFO(5)                File Formats               TERMINFO(5)

       key_seol                  kEOL   *8   shifted clear-to-
                                             end-of-line key
       key_sexit                 kEXT   *9   shifted exit key
       key_sf                    kind   kF   scroll-forward key
       key_sfind                 kFND   *0   shifted find key
       key_shelp                 kHLP   #1   shifted help key
       key_shome                 kHOM   #2   shifted home key
       key_sic                   kIC    #3   shifted insert-char-
                                             acter key
       key_sleft                 kLFT   #4   shifted left-arrow
       key_smessage              kMSG   %a   shifted message key
       key_smove                 kMOV   %b   shifted move key
       key_snext                 kNXT   %c   shifted next key
       key_soptions              kOPT   %d   shifted options key
       key_sprevious             kPRV   %e   shifted previous key
       key_sprint                kPRT   %f   shifted print key
       key_sr                    kri    kR   scroll-backward key
       key_sredo                 kRDO   %g   shifted redo key
       key_sreplace              kRPL   %h   shifted replace key
       key_sright                kRIT   %i   shifted right-arrow
       key_srsume                kRES   %j   shifted resume key
       key_ssave                 kSAV   !1   shifted save key
       key_ssuspend              kSPD   !2   shifted suspend key
       key_stab                  khts   kT   set-tab key
       key_sundo                 kUND   !3   shifted undo key
       key_suspend               kspd   &7   suspend key
       key_undo                  kund   &8   undo key
       key_up                    kcuu1  ku   up-arrow key
       keypad_local              rmkx   ke   leave 'key-
                                             board_transmit' mode
       keypad_xmit               smkx   ks   enter 'key-
                                             board_transmit' mode
       lab_f0                    lf0    l0   label on function
                                             key f0 if not f0
       lab_f1                    lf1    l1   label on function
                                             key f1 if not f1
       lab_f10                   lf10   la   label on function
                                             key f10 if not f10
       lab_f2                    lf2    l2   label on function
                                             key f2 if not f2
       lab_f3                    lf3    l3   label on function
                                             key f3 if not f3
       lab_f4                    lf4    l4   label on function
                                             key f4 if not f4
       lab_f5                    lf5    l5   label on function
                                             key f5 if not f5
       lab_f6                    lf6    l6   label on function
                                             key f6 if not f6
       lab_f7                    lf7    l7   label on function
                                             key f7 if not f7


TERMINFO(5)                File Formats               TERMINFO(5)

       lab_f8                    lf8    l8   label on function
                                             key f8 if not f8
       lab_f9                    lf9    l9   label on function
                                             key f9 if not f9
       label_format              fln    Lf   label format
       label_off                 rmln   LF   turn off soft labels
       label_on                  smln   LO   turn on soft labels
       meta_off                  rmm    mo   turn off meta mode
       meta_on                   smm    mm   turn on meta mode
                                             (8th-bit on)
       micro_column_address      mhpa   ZY   Like column_address
                                             in micro mode
       micro_down                mcud1  ZZ   Like cursor_down in
                                             micro mode
       micro_left                mcub1  Za   Like cursor_left in
                                             micro mode
       micro_right               mcuf1  Zb   Like cursor_right in
                                             micro mode
       micro_row_address         mvpa   Zc   Like row_address in
                                             micro mode
       micro_up                  mcuu1  Zd   Like cursor_up in
                                             micro mode
       newline                   nel    nw   newline (behave like
                                             cr followed by lf)
       order_of_pins             porder Ze   Match software bits
                                             to print-head pins
       orig_colors               oc     oc   Set all color pairs
                                             to the original ones
       orig_pair                 op     op   Set default pair to
                                             its original value
       pad_char                  pad    pc   padding char
                                             (instead of null)
       parm_dch                  dch    DC   delete #1 characters
       parm_delete_line          dl     DL   delete #1 lines (P*)
       parm_down_cursor          cud    DO   down #1 lines (P*)
       parm_down_micro           mcud   Zf   Like parm_down_cur-
                                             sor in micro mode
       parm_ich                  ich    IC   insert #1 characters
       parm_index                indn   SF   scroll forward #1
                                             lines (P)
       parm_insert_line          il     AL   insert #1 lines (P*)
       parm_left_cursor          cub    LE   move #1 characters
                                             to the left (P)
       parm_left_micro           mcub   Zg   Like parm_left_cur-
                                             sor in micro mode
       parm_right_cursor         cuf    RI   move #1 characters
                                             to the right (P*)
       parm_right_micro          mcuf   Zh   Like parm_right_cur-
                                             sor in micro mode
       parm_rindex               rin    SR   scroll back #1 lines


TERMINFO(5)                File Formats               TERMINFO(5)

       parm_up_cursor            cuu    UP   up #1 lines (P*)
       parm_up_micro             mcuu   Zi   Like parm_up_cursor
                                             in micro mode
       pkey_key                  pfkey  pk   program function key
                                             #1 to type string #2
       pkey_local                pfloc  pl   program function key
                                             #1 to execute string
       pkey_xmit                 pfx    px   program function key
                                             #1 to transmit
                                             string #2
       plab_norm                 pln    pn   program label #1 to
                                             show string #2
       print_screen              mc0    ps   print contents of
       prtr_non                  mc5p   pO   turn on printer for
                                             #1 bytes
       prtr_off                  mc4    pf   turn off printer
       prtr_on                   mc5    po   turn on printer
       pulse                     pulse  PU   select pulse dialing
       quick_dial                qdial  QD   dial number #1 with-
                                             out checking
       remove_clock              rmclk  RC   remove clock
       repeat_char               rep    rp   repeat char #1 #2
                                             times (P*)
       req_for_input             rfi    RF   send next input char
                                             (for ptys)
       reset_1string             rs1    r1   reset string
       reset_2string             rs2    r2   reset string
       reset_3string             rs3    r3   reset string
       reset_file                rf     rf   name of reset file
       restore_cursor            rc     rc   restore cursor to
                                             position of last
       row_address               vpa    cv   vertical position #1
                                             absolute (P)
       save_cursor               sc     sc   save current cursor
                                             position (P)
       scroll_forward            ind    sf   scroll text up (P)
       scroll_reverse            ri     sr   scroll text down (P)
       select_char_set           scs    Zj   Select character set
       set_attributes            sgr    sa   define video
                                             attributes #1-#9
       set_background            setb   Sb   Set background color
       set_bottom_margin         smgb   Zk   Set bottom margin at
                                             current line
       set_bottom_margin_parm    smgbp  Zl   Set bottom margin at
                                             line #1 or #2 lines
                                             from bottom
       set_clock                 sclk   SC   set clock, #1 hrs #2
                                             mins #3 secs


TERMINFO(5)                File Formats               TERMINFO(5)

       set_color_pair            scp    sp   Set current color
                                             pair to #1
       set_foreground            setf   Sf   Set foreground color
       set_left_margin           smgl   ML   set left soft margin
                                             at current column
       set_left_margin_parm      smglp  Zm   Set left (right)
                                             margin at column #1
       set_right_margin          smgr   MR   set right soft mar-
                                             gin at current col-
       set_right_margin_parm     smgrp  Zn   Set right margin at
                                             column #1
       set_tab                   hts    st   set a tab in every
                                             row, current columns
       set_top_margin            smgt   Zo   Set top margin at
                                             current line
       set_top_margin_parm       smgtp  Zp   Set top (bottom)
                                             margin at row #1
       set_window                wind   wi   current window is
                                             lines #1-#2 cols
       start_bit_image           sbim   Zq   Start printing bit
                                             image graphics
       start_char_set_def        scsd   Zr   Start character set
       stop_bit_image            rbim   Zs   Stop printing bit
                                             image graphics
       stop_char_set_def         rcsd   Zt   End definition of
                                             character set
       subscript_characters      subcs  Zu   List of subscript-
                                             able characters
       superscript_characters    supcs  Zv   List of superscript-
                                             able characters
       tab                       ht     ta   tab to next 8-space
                                             hardware tab stop
       these_cause_cr            docr   Zw   Printing any of
                                             these characters
                                             causes CR
       to_status_line            tsl    ts   move to status line
       tone                      tone   TO   select touch tone
       underline_char            uc     uc   underline char and
                                             move past it
       up_half_line              hu     hu   half a line up
       user0                     u0     u0   User string #0
       user1                     u1     u1   User string #1
       user2                     u2     u2   User string #2
       user3                     u3     u3   User string #3
       user4                     u4     u4   User string #4
       user5                     u5     u5   User string #5


TERMINFO(5)                File Formats               TERMINFO(5)

       user6                     u6     u6   User string #6
       user7                     u7     u7   User string #7
       user8                     u8     u8   User string #8
       user9                     u9     u9   User string #9
       wait_tone                 wait   WA   wait for dial-tone
       xoff_character            xoffc  XF   XOFF character
       xon_character             xonc   XN   XON character
       zero_motion               zerom  Zx   No motion for subse-
                                             quent character

       The following  string  capabilities  are  present  in  the
       SVr4.0  term structure, but were originally not documented
       in the man page.

               Variable          Cap-     TCap    Description
                String           name     Code
       alt_scancode_esc          scesa    S8   Alternate escape
                                               for scancode emu-
       bit_image_carriage_return bicr     Yv   Move to beginning
                                               of same row
       bit_image_newline         binel    Zz   Move to next row
                                               of the bit image
       bit_image_repeat          birep    Xy   Repeat bit image
                                               cell #1 #2 times
       char_set_names            csnm     Zy   List of character
                                               set names
       code_set_init             csin     ci   Init sequence for
                                               multiple codesets
       color_names               colornm  Yw   Give name for
                                               color #1
       define_bit_image_region   defbi    Yx   Define rectan-
                                               gualar bit image
       device_type               devt     dv   Indicate lan-
                                               guage/codeset sup-
       display_pc_char           dispc    S1   Display PC charac-
       end_bit_image_region      endbi    Yy   End a bit-image
       enter_pc_charset_mode     smpch    S2   Enter PC character
                                               display mode
       enter_scancode_mode       smsc     S4   Enter PC scancode
       exit_pc_charset_mode      rmpch    S3   Exit PC character
                                               display mode
       exit_scancode_mode        rmsc     S5   Exit PC scancode
       get_mouse                 getm     Gm   Curses should get
                                               button events
       key_mouse                 kmous    Km   Mouse event has


TERMINFO(5)                File Formats               TERMINFO(5)

       mouse_info                minfo    Mi   Mouse status
       pc_term_options           pctrm    S6   PC terminal
       pkey_plab                 pfxl     xl   Program function
                                               key #1 to type
                                               string #2 and show
                                               string #3
       req_mouse_pos             reqmp    RQ   Request mouse
       scancode_escape           scesc    S7   Escape for scan-
                                               code emulation
       set0_des_seq              s0ds     s0   Shift to code set
                                               0 (EUC set 0,
       set1_des_seq              s1ds     s1   Shift to code set
       set2_des_seq              s2ds     s2   Shift to code set
       set3_des_seq              s3ds     s3   Shift to code set
       set_a_background          setab    AB   Set background
                                               color using ANSI
       set_a_foreground          setaf    AF   Set foreground
                                               color using ANSI
       set_color_band            setcolor Yz   Change to ribbon
                                               color #1
       set_lr_margin             smglr    ML   Set both left and
                                               right margins to
                                               #1, #2
       set_page_length           slines   YZ   Set page length to
                                               #1 lines
       set_tb_margin             smgtb    MT   Sets both top and
                                               bottom margins to
                                               #1, #2

        The XSI Curses  standard  added  these.   They  are  some
        post-4.1  versions  of System V curses, e.g., Solaris 2.5
        and IRIX 6.x.  The ncurses termcap  names  for  them  are
        invented; according to the XSI Curses standard, they have
        no termcap names.  If your compiled terminfo entries  use
        these,  they  may  not be binary-compatible with System V
        terminfo entries after SVr4.1; beware!

                Variable         Cap-   TCap     Description
                 String          name   Code
        enter_horizontal_hl_mode ehhlm  Xh   Enter horizontal
                                             highlight mode
        enter_left_hl_mode       elhlm  Xl   Enter left highlight


TERMINFO(5)                File Formats               TERMINFO(5)

        enter_low_hl_mode        elohlm Xo   Enter low highlight
        enter_right_hl_mode      erhlm  Xr   Enter right high-
                                             light mode
        enter_top_hl_mode        ethlm  Xt   Enter top highlight
        enter_vertical_hl_mode   evhlm  Xv   Enter vertical high-
                                             light mode
        set_a_attributes         sgr1   sA   Define second set of
                                             video attributes
        set_pglen_inch           slengthsL   YI Set page length
                                             to #1 hundredth of
                                             an inch

   A Sample Entry
       The following entry, describing an ANSI-standard terminal,
       is  representative  of  what a terminfo entry for a modern
       terminal typically looks like.

     ansi|ansi/pc-term compatible with color,
             colors#8, ncv#3, pairs#64,
             cub=\E[%p1%dD, cud=\E[%p1%dB, cuf=\E[%p1%dC,
             cuu=\E[%p1%dA, dch=\E[%p1%dP, dl=\E[%p1%dM,
             ech=\E[%p1%dX, el1=\E[1K, hpa=\E[%p1%dG, ht=\E[I,
             ich=\E[%p1%d@, il=\E[%p1%dL, indn=\E[%p1%dS, .indn=\E[%p1%dT,
             kbs=^H, kcbt=\E[Z, kcub1=\E[D, kcud1=\E[B,
             kcuf1=\E[C, kcuu1=\E[A, kf1=\E[M, kf10=\E[V,
             kf11=\E[W, kf12=\E[X, kf2=\E[N, kf3=\E[O, kf4=\E[P,
             kf5=\E[Q, kf6=\E[R, kf7=\E[S, kf8=\E[T, kf9=\E[U,
             kich1=\E[L, mc4=\E[4i, mc5=\E[5i, nel=\r\E[S,
             op=\E[37;40m, rep=%p1%c\E[%p2%{1}%-%db,
             rin=\E[%p1%dT, s0ds=\E(B, s1ds=\E)B, s2ds=\E*B,
             s3ds=\E+B, setab=\E[4%p1%dm, setaf=\E[3%p1%dm,
             sgr0=\E[0;10m, tbc=\E[2g, u6=\E[%d;%dR, u7=\E[6n,
             u8=\E[?%[;0123456789]c, u9=\E[c, vpa=\E[%p1%dd,

       Entries may continue onto multiple lines by placing  white
       space  at  the  beginning  of  each line except the first.
       Comments may be included on lines  beginning  with  ``#''.
       Capabilities in terminfo are of three types: Boolean capa-
       bilities which indicate that the terminal has some partic-
       ular  feature, numeric capabilities giving the size of the
       terminal or the size  of  particular  delays,  and  string
       capabilities,  which  give a sequence which can be used to
       perform particular terminal operations.


TERMINFO(5)                File Formats               TERMINFO(5)

   Types of Capabilities
       All capabilities have names.  For instance, the fact  that
       ANSI-standard  terminals  have automatic margins (i.e., an
       automatic return and line-feed when the end of a  line  is
       reached)  is  indicated  by  the capability am.  Hence the
       description of ansi includes am.  Numeric capabilities are
       followed  by  the character `#' and then a positive value.
       Thus cols, which indicates the number of columns the  ter-
       minal  has,  gives  the  value  `80' for ansi.  Values for
       numeric capabilities may be specified in decimal, octal or
       hexadecimal,  using the C programming language conventions
       (e.g., 255, 0377 and 0xff or 0xFF).

       Finally, string valued capabilities, such as el (clear  to
       end of line sequence) are given by the two-character code,
       an `=', and then a string ending  at  the  next  following

       A  number  of  escape sequences are provided in the string
       valued capabilities for easy encoding of characters there.
       Both  \E  and  \e map to an ESCAPE character, ^x maps to a
       control-x for any appropriate x, and the sequences  \n  \l
       \r  \t  \b  \f  \s give a newline, line-feed, return, tab,
       backspace, form-feed, and space.  Other escapes include \^
       for  ^, \\ for \, \, for comma, \: for :, and \0 for null.
       (\0 will produce \200, which does not terminate  a  string
       but behaves as a null character on most terminals, provid-
       ing CS7 is specified.  See stty(1).)  Finally,  characters
       may be given as three octal digits after a \.

       A  delay  in  milliseconds may appear anywhere in a string
       capability, enclosed in $<..> brackets, as in  el=\EK$<5>,
       and  padding  characters  are supplied by tputs to provide
       this delay.  The delay must be a number with at  most  one
       decimal place of precision; it may be followed by suffixes
       `*' or '/' or both.  A  `*'  indicates  that  the  padding
       required  is  proportional to the number of lines affected
       by the  operation,  and  the  amount  given  is  the  per-
       affected-unit  padding  required.   (In the case of insert
       character,  the  factor  is  still  the  number  of  lines
       affected.)   Normally,  padding  is advisory if the device
       has the xon capability; it is used  for  cost  computation
       but  does not trigger delays.  A `/' suffix indicates that
       the padding is mandatory and forces a delay of  the  given
       number  of  milliseconds  even on devices for which xon is
       present to indicate flow control.

       Sometimes individual capabilities must be  commented  out.
       To  do this, put a period before the capability name.  For
       example, see the second ind in the example above.


TERMINFO(5)                File Formats               TERMINFO(5)

   Fetching Compiled Descriptions
       If the environment variable TERMINFO is set, it is  inter-
       preted  as the pathname of a directory containing the com-
       piled description you are working on.  Only that directory
       is searched.

       If  TERMINFO  is  not set, the ncurses version of the ter-
       minfo reader code  will  instead  look  in  the  directory
       $HOME/.terminfo  for  a compiled description.  If it fails
       to find one  there,  and  the  environment  variable  TER-
       MINFO_DIRS  is set, it will interpret the contents of that
       variable as a list of colon- separated directories  to  be
       searched  (an  empty  entry is interpreted as a command to
       search /usr/share/terminfo).  If no description  is  found
       in  any of the TERMINFO_DIRS directories, the fetch fails.

       If neither TERMINFO nor TERMINFO_DIRS  is  set,  the  last
       place   tried  will  be  the  system  terminfo  directory,

       (Neither the  $HOME/.terminfo  lookups  nor  TERMINFO_DIRS
       extensions   are  supported  under  stock  System  V  ter-

   Preparing Descriptions
       We now outline how to prepare descriptions  of  terminals.
       The  most  effective way to prepare a terminal description
       is by imitating the description of a similar  terminal  in
       terminfo  and  to  build up a description gradually, using
       partial descriptions with vi or some other screen-oriented
       program  to  check that they are correct.  Be aware that a
       very unusual terminal may expose deficiencies in the abil-
       ity  of  the  terminfo  file to describe it or bugs in the
       screen-handling code of the test program.

       To get the padding for insert line right (if the  terminal
       manufacturer did not document it) a severe test is to edit
       a large file at 9600 baud, delete 16 or so lines from  the
       middle  of  the screen, then hit the `u' key several times
       quickly.  If the terminal messes up, more padding is  usu-
       ally  needed.  A similar test can be used for insert char-

   Basic Capabilities
       The number of columns on each line  for  the  terminal  is
       given  by the cols numeric capability.  If the terminal is
       a CRT, then the number of lines on the screen is given  by
       the lines capability.  If the terminal wraps around to the
       beginning of the next line when it reaches the right  mar-
       gin, then it should have the am capability.  If the termi-
       nal can clear its screen, leaving the cursor in  the  home
       position,   then   this  is  given  by  the  clear  string


TERMINFO(5)                File Formats               TERMINFO(5)

       capability.  If  the  terminal  overstrikes  (rather  than
       clearing  a position when a character is struck over) then
       it should have the os capability.  If the  terminal  is  a
       printing terminal, with no soft copy unit, give it both hc
       and os.  (os applies to storage scope terminals,  such  as
       TEKTRONIX 4010 series, as well as hard copy and APL termi-
       nals.)  If there is a code to move the cursor to the  left
       edge  of the current row, give this as cr.  (Normally this
       will be carriage return, control M.)  If there is  a  code
       to  produce  an audible signal (bell, beep, etc) give this
       as bel.

       If there is a code to move the cursor one position to  the
       left  (such  as backspace) that capability should be given
       as cub1.  Similarly, codes to move to the right,  up,  and
       down should be given as cuf1, cuu1, and cud1.  These local
       cursor motions should not alter the text they  pass  over,
       for  example,  you would not normally use `cuf1= ' because
       the space would erase the character moved over.

       A very important point  here  is  that  the  local  cursor
       motions  encoded in terminfo are undefined at the left and
       top edges  of  a  CRT  terminal.   Programs  should  never
       attempt  to  backspace  around the left edge, unless bw is
       given, and never attempt to go up locally off the top.  In
       order  to  scroll text up, a program will go to the bottom
       left corner of the screen and send the ind (index) string.

       To scroll text down, a program goes to the top left corner
       of the screen and sends the  ri  (reverse  index)  string.
       The  strings  ind  and  ri are undefined when not on their
       respective corners of the screen.

       Parameterized versions of the scrolling sequences are indn
       and rin which have the same semantics as ind and ri except
       that they take one parameter, and scroll that many  lines.
       They  are also undefined except at the appropriate edge of
       the screen.

       The am capability tells whether the cursor sticks  at  the
       right  edge  of  the  screen when text is output, but this
       does not necessarily apply to a cuf1 from the last column.
       The  only local motion which is defined from the left edge
       is if bw is given, then a cub1 from  the  left  edge  will
       move  to the right edge of the previous row.  If bw is not
       given, the effect is undefined.  This is useful for  draw-
       ing  a box around the edge of the screen, for example.  If
       the terminal has switch selectable automatic margins,  the
       terminfo  file  usually assumes that this is on; i.e., am.
       If the terminal has a command which  moves  to  the  first
       column  of the next line, that command can be given as nel
       (newline).  It does not matter if the command  clears  the
       remainder  of  the current line, so if the terminal has no
       cr and lf it may still be possible to craft a working  nel


TERMINFO(5)                File Formats               TERMINFO(5)

       out of one or both of them.

       These  capabilities  suffice  to  describe  hard-copy  and
       "glass-tty" terminals.  Thus  the  model  33  teletype  is
       described as

     33|tty33|tty|model 33 teletype,
     bel=^G, cols#72, cr=^M, cud1=^J, hc, ind=^J, os,

       while the Lear Siegler ADM-3 is described as

     adm3|3|lsi adm3,
     am, bel=^G, clear=^Z, cols#80, cr=^M, cub1=^H, cud1=^J,
     ind=^J, lines#24,

   Parameterized Strings
       Cursor  addressing  and other strings requiring parameters
       in the terminal are described by  a  parameterized  string
       capability,  with  printf(3  like  escapes  %x in it.  For
       example, to address the  cursor,  the  cup  capability  is
       given, using two parameters: the row and column to address
       to.  (Rows and columns are numbered from zero and refer to
       the physical screen visible to the user, not to any unseen
       memory.)  If  the  terminal  has  memory  relative  cursor
       addressing, that can be indicated by mrcup.

       The  parameter  mechanism uses a stack and special % codes
       to manipulate it.  Typically a sequence will push  one  of
       the  parameters  onto  the stack and then print it in some
       format.  Often more complex operations are necessary.

       The % encodings have the following meanings:

            %%        outputs `%'
                      as in printf, flags are [-+#] and space
            %c        print pop() like %c in printf()
            %s        print pop() like %s in printf()

            %p[1-9]   push i'th parm
            %P[a-z]   set dynamic variable [a-z] to pop()
            %g[a-z]   get dynamic variable [a-z] and push it
            %P[A-Z]   set static variable [a-z] to pop()
            %g[A-Z]   get static variable [a-z] and push it
            %'c'      char constant c
            %{nn}     integer constant nn
            %l        push strlen(pop)

            %+ %- %* %/ %m
                      arithmetic (%m is mod): push(pop() op pop())
            %& %| %^  bit operations: push(pop() op pop())
            %= %> %<  logical operations: push(pop() op pop())
            %A, %O    logical and & or operations (for conditionals)


TERMINFO(5)                File Formats               TERMINFO(5)

            %! %~     unary operations push(op pop())
            %i        add 1 to first two parameters (for ANSI terminals)

            %? expr %t thenpart %e elsepart %;
                      if-then-else, %e elsepart is optional.
                      else-if's are possible a la Algol 68:
                      %? c1 %t b1 %e c2 %t b2 %e c3 %t b3 %e c4 %t b4 %e %;
                      ci are conditions, bi are bodies.

       Binary operations are in postfix form with the operands in
       the  usual  order.   That  is,  to  get  x-5 one would use
       "%gx%{5}%-".  %P and %g variables  are  persistent  across
       escape-string evaluations.

       Consider the HP2645, which, to get to row 3 and column 12,
       needs to be sent \E&a12c03Y  padded  for  6  milliseconds.
       Note  that  the  order of the rows and columns is inverted
       here, and that the row and column are printed as two  dig-
       its.  Thus its cup capability is "cup=6\E&%p2%2dc%p1%2dY".

       The Microterm ACT-IV needs the current row and column sent
       preceded  by  a ^T, with the row and column simply encoded
       in binary, "cup=^T%p1%c%p2%c".  Terminals which  use  "%c"
       need  to  be  able  to backspace the cursor (cub1), and to
       move the cursor up one line on the screen (cuu1).  This is
       necessary  because it is not always safe to transmit \n ^D
       and \r, as the system may change or  discard  them.   (The
       library  routines  dealing  with terminfo set tty modes so
       that tabs are never expanded, so \t is safe to send.  This
       turns out to be essential for the Ann Arbor 4080.)

       A final example is the LSI ADM-3a, which uses row and col-
       umn  offset  by  a  blank  character,  thus  "cup=\E=%p1%'
       '%+%c%p2%'  '%+%c".   After sending `\E=', this pushes the
       first parameter, pushes the ASCII value for a space  (32),
       adds  them  (pushing  the sum on the stack in place of the
       two previous values) and outputs that value as  a  charac-
       ter.   Then  the  same  is  done for the second parameter.
       More complex arithmetic is possible using the stack.

   Cursor Motions
       If the terminal has a fast way to home the cursor (to very
       upper  left  corner  of  screen) then this can be given as
       home; similarly a fast way of getting to the  lower  left-
       hand  corner can be given as ll; this may involve going up
       with cuu1 from the home position,  but  a  program  should
       never  do this itself (unless ll does) because it can make
       no assumption about the effect of moving up from the  home
       position.   Note  that  the  home  position is the same as
       addressing to (0,0): to the top left corner of the screen,
       not  of  memory.   (Thus, the \EH sequence on HP terminals
       cannot be used for home.)


TERMINFO(5)                File Formats               TERMINFO(5)

       If the terminal has row or column absolute cursor address-
       ing,  these  can be given as single parameter capabilities
       hpa (horizontal position absolute) and vpa (vertical posi-
       tion absolute).  Sometimes these are shorter than the more
       general two parameter sequence (as with  the  hp2645)  and
       can be used in preference to cup.  If there are parameter-
       ized local motions (e.g., move  n  spaces  to  the  right)
       these can be given as cud, cub, cuf, and cuu with a single
       parameter indicating how many spaces to move.   These  are
       primarily  useful  if the terminal does not have cup, such
       as the TEKTRONIX 4025.

       If the terminal needs to be in a special mode when running
       a program that uses these capabilities, the codes to enter
       and exit this mode can be given as smcup and rmcup.   This
       arises,  for example, from terminals like the Concept with
       more than one page of memory.  If the  terminal  has  only
       memory  relative cursor addressing and not screen relative
       cursor addressing, a one screen-sized window must be fixed
       into  the terminal for cursor addressing to work properly.
       This is also used for the TEKTRONIX 4025, where smcup sets
       the  command character to be the one used by terminfo.  If
       the smcup sequence will not restore the  screen  after  an
       rmcup sequence is output (to the state prior to outputting
       rmcup), specify nrrmc.

   Area Clears
       If the terminal can clear from the current position to the
       end  of  the  line,  leaving  the cursor where it is, this
       should be given as el.  If the terminal can clear from the
       beginning  of  the line to the current position inclusive,
       leaving the cursor where it is, this should  be  given  as
       el1.   If the terminal can clear from the current position
       to the end of the display, then this should  be  given  as
       ed.   Ed  is only defined from the first column of a line.
       (Thus, it can be simulated by a request to delete a  large
       number of lines, if a true ed is not available.)

   Insert/delete line and vertical motions
       If  the terminal can open a new blank line before the line
       where the cursor is, this should be given as il1; this  is
       done  only  from the first position of a line.  The cursor
       must then appear on the newly blank line.  If the terminal
       can  delete  the  line  which  the cursor is on, then this
       should be given as dl1; this is done only from  the  first
       position  on  the line to be deleted.  Versions of il1 and
       dl1 which take a single parameter  and  insert  or  delete
       that many lines can be given as il and dl.

       If  the terminal has a settable scrolling region (like the
       vt100) the command to set this can be described  with  the
       csr  capability,  which  takes two parameters: the top and


TERMINFO(5)                File Formats               TERMINFO(5)

       bottom lines of the scrolling region.  The cursor position
       is, alas, undefined after using this command.

       It  is possible to get the effect of insert or delete line
       using csr on a properly chosen region; the sc and rc (save
       and  restore  cursor)  commands may be useful for ensuring
       that your synthesized insert/delete string does  not  move
       the  cursor.   (Note that the ncurses(3) library does this
       synthesis  automatically,  so   you   need   not   compose
       insert/delete strings for an entry with csr).

       Yet another way to construct insert and delete might be to
       use a combination of index with  the  memory-lock  feature
       found  on some terminals (like the HP-700/90 series, which
       however also has insert/delete).

       Inserting lines at the top or bottom  of  the  screen  can
       also  be  done using ri or ind on many terminals without a
       true insert/delete line, and is often faster even on  ter-
       minals with those features.

       The  boolean  non_dest_scroll_region should be set if each
       scrolling window is effectively a view port on  a  screen-
       sized  canvas.   To  test  for  this  capability, create a
       scrolling region in the middle of the screen, write  some-
       thing  to  the  bottom line, move the cursor to the top of
       the region, and do ri followed by dl1 or ind.  If the data
       scrolled  off  the  bottom  of  the  region  by the ri re-
       appears, then scrolling is non-destructive.  System V  and
       XSI  Curses  expect that ind, ri, indn, and rin will simu-
       late destructive scrolling; their  documentation  cautions
       you  not  to  define csr unless this is true.  This curses
       implementation is more liberal and will do explicit erases
       after scrolling if ndstr is defined.

       If the terminal has the ability to define a window as part
       of memory, which all commands affect, it should  be  given
       as the parameterized string wind.  The four parameters are
       the starting and ending lines in memory and  the  starting
       and ending columns in memory, in that order.

       If  the terminal can retain display memory above, then the
       da capability should be given; if display  memory  can  be
       retained  below,  then db should be given.  These indicate
       that deleting a line  or  scrolling  may  bring  non-blank
       lines  up  from  below  or that scrolling back with ri may
       bring down non-blank lines.

   Insert/Delete Character
       There are two basic kinds of  intelligent  terminals  with
       respect  to insert/delete character which can be described
       using terminfo.  The most common  insert/delete  character
       operations  affect only the characters on the current line


TERMINFO(5)                File Formats               TERMINFO(5)

       and shift characters off the  end  of  the  line  rigidly.
       Other  terminals,  such  as the Concept 100 and the Perkin
       Elmer Owl, make a distinction between  typed  and  untyped
       blanks  on  the  screen, shifting upon an insert or delete
       only to an untyped blank on the  screen  which  is  either
       eliminated,  or  expanded  to two untyped blanks.  You can
       determine the kind of terminal you have  by  clearing  the
       screen  and  then typing text separated by cursor motions.
       Type "abc    def" using local cursor motions (not  spaces)
       between the "abc" and the "def".  Then position the cursor
       before the "abc" and put the terminal in insert mode.   If
       typing  characters  causes  the  rest of the line to shift
       rigidly and characters to fall off the end, then your ter-
       minal  does  not  distinguish  between  blanks and untyped
       positions.  If the "abc" shifts over to  the  "def"  which
       then  move together around the end of the current line and
       onto the next as you insert, you have the second  type  of
       terminal,  and should give the capability in, which stands
       for "insert null".  While these are two logically separate
       attributes  (one line vs. multi-line insert mode, and spe-
       cial treatment of untyped spaces) we have seen  no  termi-
       nals whose insert mode cannot be described with the single

       Terminfo can describe both terminals which have an  insert
       mode, and terminals which send a simple sequence to open a
       blank position on the current  line.   Give  as  smir  the
       sequence  to  get  into  insert  mode.   Give  as rmir the
       sequence to leave insert  mode.   Now  give  as  ich1  any
       sequence needed to be sent just before sending the charac-
       ter to be inserted.  Most terminals  with  a  true  insert
       mode  will  not give ich1; terminals which send a sequence
       to open a screen position should give it here.

       If your terminal has both, insert mode is usually  prefer-
       able  to  ich1.   Technically,  you  should  not give both
       unless the terminal actually requires both to be  used  in
       combination.   Accordingly,  some  non-curses applications
       get confused if both are present; the symptom  is  doubled
       characters in an update using insert.  This requirement is
       now rare; most ich sequences do not require previous smir,
       and most smir insert modes do not require ich1 before each
       character.  Therefore, the  new  curses  actually  assumes
       this  is the case and uses either rmir/smir or ich/ich1 as
       appropriate (but not both).  If you have to write an entry
       to  be  used under new curses for a terminal old enough to
       need both, include the rmir/smir sequences in ich1.

       If post insert padding is needed, give this as a number of
       milliseconds  in ip (a string option).  Any other sequence
       which may need to be sent after  an  insert  of  a  single
       character may also be given in ip.  If your terminal needs
       both to be placed into an `insert mode' and a special code
       to  precede  each  inserted character, then both smir/rmir


TERMINFO(5)                File Formats               TERMINFO(5)

       and ich1 can be given, and both will  be  used.   The  ich
       capability, with one parameter, n, will repeat the effects
       of ich1 n times.

       If padding is necessary between characters typed while not
       in  insert  mode,  give  this  as a number of milliseconds
       padding in rmp.

       It is occasionally  necessary  to  move  around  while  in
       insert  mode  to delete characters on the same line (e.g.,
       if there is a tab after the insertion position).  If  your
       terminal  allows  motion while in insert mode you can give
       the capability mir to speed up  inserting  in  this  case.
       Omitting  mir  will  affect  only  speed.   Some terminals
       (notably Datamedia's) must not have mir because of the way
       their insert mode works.

       Finally,  you  can specify dch1 to delete a single charac-
       ter, dch with one parameter, n, to  delete  n  characters,
       and  delete mode by giving smdc and rmdc to enter and exit
       delete mode (any mode the terminal needs to be  placed  in
       for dch1 to work).

       A  command to erase n characters (equivalent to outputting
       n blanks without moving the cursor) can be  given  as  ech
       with one parameter.

   Highlighting, Underlining, and Visible Bells
       If  your  terminal  has  one  or  more  kinds  of  display
       attributes, these can be represented in a number  of  dif-
       ferent ways.  You should choose one display form as stand-
       out mode, representing a good, high contrast, easy-on-the-
       eyes,  format  for  highlighting  error messages and other
       attention getters.  (If you have a choice,  reverse  video
       plus  half-bright  is  good, or reverse video alone.)  The
       sequences to enter and exit standout  mode  are  given  as
       smso  and  rmso, respectively.  If the code to change into
       or out of standout mode  leaves  one  or  even  two  blank
       spaces  on the screen, as the TVI 912 and Teleray 1061 do,
       then xmc should be given to tell how many spaces are left.

       Codes  to  begin  underlining  and  end underlining can be
       given as smul and rmul respectively.  If the terminal  has
       a  code  to  underline  the current character and move the
       cursor one space to the right, such as the Microterm Mime,
       this can be given as uc.

       Other  capabilities  to  enter  various highlighting modes
       include blink (blinking) bold (bold or extra  bright)  dim
       (dim  or  half-bright)  invis (blanking or invisible text)
       prot (protected) rev (reverse video) sgr0  (turn  off  all
       attribute  modes)  smacs  (enter  alternate  character set
       mode) and  rmacs  (exit  alternate  character  set  mode).


TERMINFO(5)                File Formats               TERMINFO(5)

       Turning  on  any of these modes singly may or may not turn
       off other modes.

       If there is a sequence to set  arbitrary  combinations  of
       modes,  this should be given as sgr (set attributes), tak-
       ing 9 parameters.  Each parameter is either 0 or  nonzero,
       as the corresponding attribute is on or off.  The 9 param-
       eters are, in order: standout, underline, reverse,  blink,
       dim,  bold,  blank, protect, alternate character set.  Not
       all modes need be supported by sgr, only those  for  which
       corresponding separate attribute commands exist.

       For example, the DEC vt220 supports most of the modes:

           tparm parameter   attribute    escape sequence

           none              none         \E[0m
           p1                standout     \E[0;1;7m
           p2                underline    \E[0;4m
           p3                reverse      \E[0;7m
           p4                blink        \E[0;5m
           p5                dim          not available
           p6                bold         \E[0;1m
           p7                invis        \E[0;8m
           p8                protect      not used
           p9                altcharset   ^O (off) ^N (on)

       We  begin each escape sequence by turning off any existing
       modes, since there is no quick way  to  determine  whether
       they are active.  Standout is set up to be the combination
       of reverse and bold.  The vt220  terminal  has  a  protect
       mode,  though  it  is  not commonly used in sgr because it
       protects characters on the screen  from  the  host's  era-
       sures.   The  altcharset mode also is different in that it
       is either ^O or ^N, depending on whether it is off or  on.
       If  all  modes  are  turned  on, the resulting sequence is

       Some sequences are common to different modes.   For  exam-
       ple,  ;7  is output when either p1 or p3 is true, that is,
       if either standout or reverse modes are turned on.

       Writing out the above sequences, along with  their  depen-
       dencies yields

         sequence    when to output     terminfo translation

         \E[0       always              \E[0
         ;1         if p1 or p6         %?%p1%p6%|%t;1%;
         ;4         if p2               %?%p2%|%t;4%;
         ;5         if p4               %?%p4%|%t;5%;
         ;7         if p1 or p3         %?%p1%p3%|%t;7%;
         ;8         if p7               %?%p7%|%t;8%;


TERMINFO(5)                File Formats               TERMINFO(5)

         m          always              m
         ^N or ^O   if p9 ^N, else ^O   %?%p9%t^N%e^O%;

       Putting this all together into the sgr sequence gives:


       Remember  that  if  you specify sgr, you must also specify

       Terminals with the ``magic cookie'' glitch  (xmc)  deposit
       special   ``cookies''   when   they  receive  mode-setting
       sequences, which affect the display algorithm rather  than
       having  extra  bits  for  each character.  Some terminals,
       such as the HP 2621,  automatically  leave  standout  mode
       when  they  move to a new line or the cursor is addressed.
       Programs using standout mode  should  exit  standout  mode
       before  moving the cursor or sending a newline, unless the
       msgr capability, asserting that it  is  safe  to  move  in
       standout mode, is present.

       If  the terminal has a way of flashing the screen to indi-
       cate an error quietly (a bell replacement) then  this  can
       be given as flash; it must not move the cursor.

       If  the  cursor  needs to be made more visible than normal
       when it is not on the bottom line (to make, for example, a
       non-blinking  underline  into  an  easier to find block or
       blinking underline) give this sequence as cvvis.  If there
       is  a  way  to  make the cursor completely invisible, give
       that as civis.  The capability cnorm should be given which
       undoes the effects of both of these modes.

       If your terminal correctly generates underlined characters
       (with no special codes needed) even  though  it  does  not
       overstrike,  then you should give the capability ul.  If a
       character overstriking another leaves both  characters  on
       the screen, specify the capability os.  If overstrikes are
       erasable with a blank, then this should  be  indicated  by
       giving eo.

   Keypad and Function Keys
       If the terminal has a keypad that transmits codes when the
       keys are pressed, this information can be given. Note that
       it  is  not  possible to handle terminals where the keypad
       only works in local (this applies,  for  example,  to  the
       unshifted  HP  2621  keys).   If  the keypad can be set to
       transmit or not transmit, give these  codes  as  smkx  and
       rmkx.  Otherwise the keypad is assumed to always transmit.
       The codes sent by the left arrow, right arrow,  up  arrow,
       down  arrow,  and  home keys can be given as kcub1, kcuf1,
       kcuu1,  kcud1,  and  khome  respectively.   If  there  are


TERMINFO(5)                File Formats               TERMINFO(5)

       function  keys  such  as  f0, f1, ..., f10, the codes they
       send can be given as kf0, kf1, ..., kf10.  If  these  keys
       have  labels  other  than  the default f0 through f10, the
       labels can be given as lf0, lf1,  ...,  lf10.   The  codes
       transmitted  by  certain  other special keys can be given:
       kll (home down), kbs (backspace), ktbc (clear  all  tabs),
       kctab  (clear  the  tab  stop in this column), kclr (clear
       screen or  erase  key),  kdch1  (delete  character),  kdl1
       (delete line), krmir (exit insert mode), kel (clear to end
       of line), ked (clear to  end  of  screen),  kich1  (insert
       character  or  enter insert mode), kil1 (insert line), knp
       (next  page),  kpp  (previous  page),  kind  (scroll  for-
       ward/down), kri (scroll backward/up), khts (set a tab stop
       in this column).  In addition, if the keypad has a 3 by  3
       array  of  keys  including  the four arrow keys, the other
       five keys can be given as ka1, ka3,  kb2,  kc1,  and  kc3.
       These  keys are useful when the effects of a 3 by 3 direc-
       tional pad are needed.

       Strings to program function keys can be  given  as  pfkey,
       pfloc,  and pfx.  A string to program screen labels should
       be specified as pln.  Each  of  these  strings  takes  two
       parameters:  the function key number to program (from 0 to
       10) and the string to program it with.  Function key  num-
       bers  out  of  this  range may program undefined keys in a
       terminal dependent manner.   The  difference  between  the
       capabilities  is  that pfkey causes pressing the given key
       to be the same as the user typing the given string;  pfloc
       causes the string to be executed by the terminal in local;
       and pfx causes the string to be transmitted  to  the  com-

       The capabilities nlab, lw and lh define the number of pro-
       grammable screen labels and their width  and  height.   If
       there  are  commands  to  turn the labels on and off, give
       them in smln and rmln.  smln is normally output after  one
       or more pln sequences to make sure that the change becomes

   Tabs and Initialization
       If the terminal has hardware tabs, the command to  advance
       to  the  next tab stop can be given as ht (usually control
       I).  A ``back-tab'' command which moves  leftward  to  the
       preceding tab stop can be given as cbt.  By convention, if
       the teletype modes indicate that tabs are  being  expanded
       by  the  computer  rather than being sent to the terminal,
       programs should not use ht or cbt even if  they  are  pre-
       sent,  since  the user may not have the tab stops properly
       set.  If the terminal has hardware  tabs  which  are  ini-
       tially set every n spaces when the terminal is powered up,
       the numeric parameter it is given, showing the  number  of
       spaces  the tabs are set to.  This is normally used by the
       tset command to determine whether  to  set  the  mode  for


TERMINFO(5)                File Formats               TERMINFO(5)

       hardware  tab expansion, and whether to set the tab stops.
       If the terminal has tab stops that can be  saved  in  non-
       volatile  memory, the terminfo description can assume that
       they are properly set.

       Other capabilities include is1, is2, and is3,  initializa-
       tion  strings  for the terminal, iprog, the path name of a
       program to be run to initialize the terminal, and if,  the
       name  of  a  file  containing long initialization strings.
       These strings are expected to set the terminal into  modes
       consistent  with  the  rest  of  the terminfo description.
       They are normally sent to the terminal, by the init option
       of  the  tput  program,  each time the user logs in.  They
       will be printed in the following order:  run  the  program
       iprog;  output  is1;  is2; set the margins using mgc, smgl
       and smgr; set tabs using tbc and hts; print the  file  if;
       and finally output is3.

       Most  initialization  is  done with is2.  Special terminal
       modes can be set up without duplicating strings by putting
       the  common  sequences in is2 and special cases in is1 and
       is3.  A pair of sequences that does a harder reset from  a
       totally  unknown  state  can  be analogously given as rs1,
       rs2, rf, and rs3, analogous to is2 and if.  These  strings
       are  output  by  the reset program, which is used when the
       terminal gets into a wedged state.  Commands are  normally
       placed  in rs1, rs2 rs3 and rf only if they produce annoy-
       ing effects on the screen and are not necessary when  log-
       ging  in.   For example, the command to set the vt100 into
       80-column mode would normally  be  part  of  is2,  but  it
       causes  an  annoying  glitch of the screen and is not nor-
       mally needed since the terminal is usually already  in  80
       column mode.

       If there are commands to set and clear tab stops, they can
       be given as tbc (clear all tab stops) and hts (set  a  tab
       stop  in the current column of every row).  If a more com-
       plex sequence is needed  to  set  the  tabs  than  can  be
       described  by  this,  the sequence can be placed in is2 or

   Delays and Padding
       Many older  and  slower  terminals  don't  support  either
       XON/XOFF or DTR handshaking, including hard copy terminals
       and some very archaic CRTs (including,  for  example,  DEC
       VT100s).   These may require padding characters after cer-
       tain cursor motions and screen changes.

       If the terminal uses xon/xoff handshaking for flow control
       (that  is, it automatically emits ^S back to the host when
       its input buffers are close to full), set xon.  This capa-
       bility  suppresses  the emission of padding.  You can also
       set it for memory-mapped console devices effectively  that
       don't  have  a  speed  limit.   Padding information should


TERMINFO(5)                File Formats               TERMINFO(5)

       still be included so that routines can make  better  deci-
       sions about relative costs, but actual pad characters will
       not be transmitted.

       If pb (padding baud rate) is given, padding is  suppressed
       at  baud rates below the value of pb.  If the entry has no
       padding baud rate, then whether padding is emitted or  not
       is completely controlled by xon.

       If  the terminal requires other than a null (zero) charac-
       ter as a pad, then this can be given  as  pad.   Only  the
       first character of the pad string is used.

   Status Lines
       Some  terminals  have  an extra `status line' which is not
       normally used by software (and thus  not  counted  in  the
       terminal's lines capability).

       The  simplest  case  is  a  status  line  which is cursor-
       addressable but not part of the main scrolling  region  on
       the  screen;  the  Heathkit  H19 has a status line of this
       kind, as would a 24-line VT100 with  a  23-line  scrolling
       region  set up on initialization.  This situation is indi-
       cated by the hs capability.

       Some terminals with status lines need special sequences to
       access  the  status  line.   These  may  be expressed as a
       string with single parameter tsl which takes the cursor to
       a  given  zero-origin column on the status line. The capa-
       bility fsl must return to the main-screen cursor positions
       before  the  last  tsl.   You may need to embed the string
       values of sc (save cursor) and rc (restore cursor) in  tsl
       and fsl to accomplish this.

       The  status  line is normally assumed to be the same width
       as the width of the terminal.  If this is untrue, you  can
       specify it with the numeric capability wsl.

       A  command to erase or blank the status line may be speci-
       fied as dsl.

       The  boolean  capability  eslok  specifies   that   escape
       sequences,  tabs, etc. work ordinarily in the status line.

       The ncurses implementation does not yet use any  of  these
       capabilities.   They are documented here in case they ever
       become important.

   Line Graphics
       Many terminals have alternate character  sets  useful  for
       forms-drawing.   Terminfo  and curses build in support for
       the drawing characters supported by the VT100,  with  some


TERMINFO(5)                File Formats               TERMINFO(5)

       characters  from  the  AT&T  4410v1 added.  This alternate
       character set may be specified by the acsc capability.

                Glyph             ACS            Ascii      VT100
                 Name             Name           Default    Name
       UK pound sign              ACS_STERLING   f          }
       arrow pointing down        ACS_DARROW     v          .
       arrow pointing left        ACS_LARROW     <          ,
       arrow pointing right       ACS_RARROW     >          +
       arrow pointing up          ACS_UARROW     ^          -
       board of squares           ACS_BOARD      #          h
       bullet                     ACS_BULLET     o          ~
       checker board (stipple)    ACS_CKBOARD    :          a
       degree symbol              ACS_DEGREE     \          f
       diamond                    ACS_DIAMOND    +          `
       greater-than-or-equal-to   ACS_GEQUAL     >          z
       greek pi                   ACS_PI         *          {
       horizontal line            ACS_HLINE      -          q
       lantern symbol             ACS_LANTERN    #          i
       large plus or crossover    ACS_PLUS       +          n
       less-than-or-equal-to      ACS_LEQUAL     <          y
       lower left corner          ACS_LLCORNER   +          m
       lower right corner         ACS_LRCORNER   +          j
       not-equal                  ACS_NEQUAL     !          |
       plus/minus                 ACS_PLMINUS    #          g
       scan line 1                ACS_S1         ~          o
       scan line 3                ACS_S3         -          p
       scan line 7                ACS_S7         -          r
       scan line 9                ACS_S9         _          s
       solid square block         ACS_BLOCK      #          0
       tee pointing down          ACS_TTEE       +          w
       tee pointing left          ACS_RTEE       +          u
       tee pointing right         ACS_LTEE       +          t
       tee pointing up            ACS_BTEE       +          v
       upper left corner          ACS_ULCORNER   +          l
       upper right corner         ACS_URCORNER   +          k
       vertical line              ACS_VLINE      |          x

       The best way to define a new device's graphics set  is  to
       add  a  column  to a copy of this table for your terminal,
       giving  the  character   which   (when   emitted   between
       smacs/rmacs  switches) will be rendered as the correspond-
       ing graphic.  Then read off the VT100/your terminal  char-
       acter  pairs  right  to left in sequence; these become the
       ACSC string.

   Color Handling
       Most color terminals are either `Tektronix-like'  or  `HP-
       like'.   Tektronix-like terminals have a predefined set of
       N colors (where N usually 8), and can  set  character-cell
       foreground and background characters independently, mixing
       them into N * N color-pairs.  On  HP-like  terminals,  the
       use must set each color pair up separately (foreground and


TERMINFO(5)                File Formats               TERMINFO(5)

       background are  not  independently  settable).   Up  to  M
       color-pairs  may  be  set  up  from  2*M different colors.
       ANSI-compatible terminals are Tektronix-like.

       Some basic color capabilities are independent of the color
       method.  The numeric capabilities colors and pairs specify
       the maximum numbers of colors and color-pairs that can  be
       displayed  simultaneously.   The op (original pair) string
       resets foreground and background colors to  their  default
       values  for the terminal.  The oc string resets all colors
       or color-pairs to their default values for  the  terminal.
       Some  terminals  (including  many  PC  terminal emulators)
       erase screen  areas  with  the  current  background  color
       rather  than the power-up default background; these should
       have the boolean capability bce.

       To change the current foreground or background color on  a
       Tektronix-type  terminal,  use setaf (set ANSI foreground)
       and setab (set ANSI background) or setf  (set  foreground)
       and  setb (set background).  These take one parameter, the
       color  number.   The  SVr4  documentation  describes  only
       setaf/setab;  the  XPG4  draft  says that "If the terminal
       supports ANSI escape sequences to set background and fore-
       ground,  they  should be coded as setaf and setab, respec-
       tively.  If the terminal supports other  escape  sequences
       to  set background and foreground, they should be coded as
       setf and setb, respectively.  The vidputs()  function  and
       the  refresh  functions  use  setaf  and setab if they are

       The setaf/setab and setf/setb capabilities take  a  single
       numeric  argument  each.  Argument values 0-7 are portably
       defined as follows (the  middle  column  is  the  symbolic
       #define  available in the header for the curses or ncurses
       libraries).  The terminal hardware is free to map these as
       it  likes, but the RGB values indicate normal locations in
       color space.

             Color       #define       Value       RGB
             black     COLOR_BLACK       0     0, 0, 0
             red       COLOR_RED         1     max,0,0
             green     COLOR_GREEN       2     0,max,0
             yellow    COLOR_YELLOW      3     max,max,0
             blue      COLOR_BLUE        4     0,0,max
             magenta   COLOR_MAGENTA     5     max,0,max
             cyan      COLOR_CYAN        6     0,max,max
             white     COLOR_WHITE       7     max,max,max

       On an HP-like terminal, use scp with a  color-pair  number
       parameter to set which color pair is current.

       On  a  Tektronix-like  terminal, the capability ccc may be
       present to indicate that colors can be modified.   If  so,
       the initc capability will take a color number (0 to colors


TERMINFO(5)                File Formats               TERMINFO(5)

       - 1)and three more parameters which  describe  the  color.
       These three parameters default to being interpreted as RGB
       (Red, Green, Blue) values.  If the boolean capability  hls
       is present, they are instead as HLS (Hue, Lightness, Satu-
       ration) indices.  The ranges are terminal-dependent.

       On an HP-like terminal, initp may give  a  capability  for
       changing  a  color-pair value.  It will take seven parame-
       ters; a color-pair number (0 to max_pairs -  1),  and  two
       triples  describing  first  background and then foreground
       colors.  These parameters must be (Red,  Green,  Blue)  or
       (Hue, Lightness, Saturation) depending on hls.

       On  some  color terminals, colors collide with highlights.
       You can register these collisions with the ncv capability.
       This  is a bit-mask of attributes not to be used when col-
       ors are enabled.  The correspondence with  the  attributes
       understood by curses is as follows:

                      Attribute      Bit   Decimal
                      A_STANDOUT     0     1
                      A_UNDERLINE    1     2
                      A_REVERSE      2     4
                      A_BLINK        3     8
                      A_DIM          4     16
                      A_BOLD         5     32
                      A_INVIS        6     64
                      A_PROTECT      7     128
                      A_ALTCHARSET   8     256

       For  example,  on  many  IBM  PC  consoles,  the underline
       attribute collides with the foreground color blue  and  is
       not  available  in  color  mode.  These should have an ncv
       capability of 2.

       SVr4 curses does nothing with ncv, ncurses  recognizes  it
       and optimizes the output in favor of colors.

       If  the terminal requires other than a null (zero) charac-
       ter as a pad, then this can be given  as  pad.   Only  the
       first  character of the pad string is used.  If the termi-
       nal does not have a pad character, specify npc.  Note that
       ncurses  implements  the  termcap-compatible  PC variable;
       though the application may set  this  value  to  something
       other  than  a  null,  ncurses will test npc first and use
       napms if the terminal has no pad character.

       If the terminal can move up or down half a line, this  can
       be  indicated  with  hu  (half-line  up) and hd (half-line
       down).  This is primarily useful for superscripts and sub-
       scripts  on  hard-copy terminals.  If a hard-copy terminal
       can eject to the next page (form feed), give  this  as  ff


TERMINFO(5)                File Formats               TERMINFO(5)

       (usually control L).

       If  there is a command to repeat a given character a given
       number of times (to save time transmitting a large  number
       of  identical  characters)  this can be indicated with the
       parameterized string rep.   The  first  parameter  is  the
       character  to  be repeated and the second is the number of
       times to repeat it.  Thus, tparm(repeat_char, 'x', 10)  is
       the same as `xxxxxxxxxx'.

       If  the terminal has a settable command character, such as
       the TEKTRONIX 4025, this can be indicated with  cmdch.   A
       prototype command character is chosen which is used in all
       capabilities.  This character is given in the cmdch  capa-
       bility  to  identify it.  The following convention is sup-
       ported on some UNIX systems:  The  environment  is  to  be
       searched  for a CC variable, and if found, all occurrences
       of the prototype character are replaced with the character
       in the environment variable.

       Terminal  descriptions  that  do  not represent a specific
       kind of known terminal, such as switch, dialup, patch, and
       network,  should  include  the  gn (generic) capability so
       that programs can complain that they do not  know  how  to
       talk  to the terminal.  (This capability does not apply to
       virtual  terminal  descriptions  for  which   the   escape
       sequences are known.)

       If  the  terminal has a ``meta key'' which acts as a shift
       key, setting the 8th bit  of  any  character  transmitted,
       this  fact  can be indicated with km.  Otherwise, software
       will assume that the 8th bit is parity and it will usually
       be  cleared.   If strings exist to turn this ``meta mode''
       on and off, they can be given as smm and rmm.

       If the terminal has more lines of memory than will fit  on
       the  screen  at once, the number of lines of memory can be
       indicated with lm.  A value of  lm#0  indicates  that  the
       number of lines is not fixed, but that there is still more
       memory than fits on the screen.

       If the terminal is one of those supported by the UNIX vir-
       tual  terminal  protocol, the terminal number can be given
       as vt.

       Media copy strings which control an auxiliary printer con-
       nected to the terminal can be given as mc0: print the con-
       tents of the screen, mc4: turn off the printer,  and  mc5:
       turn  on  the  printer.   When the printer is on, all text
       sent to the terminal will be sent to the printer.   It  is
       undefined whether the text is also displayed on the termi-
       nal screen when the printer is on.  A variation mc5p takes
       one parameter, and leaves the printer on for as many char-
       acters as the value  of  the  parameter,  then  turns  the


TERMINFO(5)                File Formats               TERMINFO(5)

       printer  off.   The  parameter should not exceed 255.  All
       text,  including  mc4,  is  transparently  passed  to  the
       printer while an mc5p is in effect.

   Glitches and Braindamage
       Hazeltine  terminals, which do not allow `~' characters to
       be displayed should indicate hz.

       Terminals which ignore a line-feed immediately after an am
       wrap, such as the Concept and vt100, should indicate xenl.

       If el is required to  get  rid  of  standout  (instead  of
       merely  writing  normal  text on top of it), xhp should be

       Teleray terminals, where tabs turn  all  characters  moved
       over  to  blanks,  should  indicate xt (destructive tabs).
       Note:   the    variable    indicating    this    is    now
       `dest_tabs_magic_smso';  in  older  versions,  it was tel-
       eray_glitch.  This glitch is also taken to mean that it is
       not  possible  to  position the cursor on top of a ``magic
       cookie'', that to erase standout mode it is instead neces-
       sary to use delete and insert line.  The ncurses implemen-
       tation ignores this glitch.

       The Beehive Superbee, which is unable to correctly  trans-
       mit  the escape or control C characters, has xsb, indicat-
       ing that the f1 key is used for escape and f2 for  control
       C.   (Only  certain Superbees have this problem, depending
       on the ROM.)  Note that in older terminfo  versions,  this
       capability   was   called   `beehive_glitch';  it  is  now

       Other specific  terminal  problems  may  be  corrected  by
       adding more capabilities of the form xx.

   Similar Terminals
       If there are two very similar terminals, one (the variant)
       can be defined as being just like  the  other  (the  base)
       with  certain  exceptions.  In the definition of the vari-
       ant, the string capability use can be given with the  name
       of  the  base terminal.  The capabilities given before use
       override those in the base type named by  use.   If  there
       are  multiple use capabilities, they are merged in reverse
       order.  That is, the rightmost use reference is  processed
       first,  then the one to its left, and so forth.  Capabili-
       ties given explicitly in the entry override those  brought
       in by use references.

       A capability can be canceled by placing xx@ to the left of
       the use reference that imports it, where xx is  the  capa-
       bility.  For example, the entry


TERMINFO(5)                File Formats               TERMINFO(5)

                   2621-nl, smkx@, rmkx@, use=2621,

       defines  a  2621-nl  that  does  not have the smkx or rmkx
       capabilities, and hence does not turn on the function  key
       labels  when in visual mode.  This is useful for different
       modes for a terminal, or for different user preferences.

   Pitfalls of Long Entries
       Long terminfo entries are unlikely to  be  a  problem;  to
       date,  no  entry has even approached terminfo's 4K string-
       table maximum.  Unfortunately,  the  termcap  translations
       are  much  more  strictly  limited  (to  1K), thus termcap
       translations of long terminfo entries can cause  problems.

       The  man  pages for 4.3BSD and older versions of tgetent()
       instruct the user to allocate a 1K buffer for the  termcap
       entry.   The  entry  gets  null-terminated  by the termcap
       library, so that makes the maximum safe length for a term-
       cap entry 1k-1 (1023) bytes.  Depending on what the appli-
       cation and the termcap library being used does, and  where
       in  the  termcap  file the terminal type that tgetent() is
       searching for is, several bad things can happen.

       Some termcap libraries print a warning message or exit  if
       they  find  an entry that's longer than 1023 bytes; others
       don't; others truncate the entries to  1023  bytes.   Some
       application programs allocate more than the recommended 1K
       for the termcap entry; others don't.

       Each termcap entry has two important sizes associated with
       it: before "tc" expansion, and after "tc" expansion.  "tc"
       is the capability that tacks on another termcap  entry  to
       the  end  of  the current one, to add on its capabilities.
       If a termcap entry doesn't use the "tc"  capability,  then
       of course the two lengths are the same.

       The  "before  tc  expansion"  length is the most important
       one, because it affects more than just users of that  par-
       ticular  terminal.   This is the length of the entry as it
       exists in /etc/termcap, minus the backslash-newline pairs,
       which tgetent() strips out while reading it.  Some termcap
       libraries strip off the final newline,  too  (GNU  termcap
       does not).  Now suppose:

       *    a  termcap  entry  before expansion is more than 1023
            bytes long,

       *    and the application has only allocated a 1k buffer,

       *    and the termcap library (like the one in  BSD/OS  1.1
            and  GNU)  reads  the whole entry into the buffer, no
            matter what its length, to see if it's the  entry  it


TERMINFO(5)                File Formats               TERMINFO(5)

       *    and  tgetent()  is searching for a terminal type that
            either is the long entry, appears in the termcap file
            after  the  long entry, or doesn't appear in the file
            at all (so that tgetent() has  to  search  the  whole
            termcap file).

       Then  tgetent()  will overwrite memory, perhaps its stack,
       and probably core dump the program.  Programs like  telnet
       are  particularly  vulnerable;  modern  telnets pass along
       values like the terminal type automatically.  The  results
       are  almost  as  undesirable  with a termcap library, like
       SunOS 4.1.3 and Ultrix 4.4, that prints  warning  messages
       when  it reads an overly long termcap entry.  If a termcap
       library truncates long entries,  like  OSF/1  3.0,  it  is
       immune  to  dying  here but will return incorrect data for
       the terminal.

       The "after tc expansion" length will have a similar effect
       to the above, but only for people who actually set TERM to
       that terminal type, since tgetent() only does "tc"  expan-
       sion once it's found the terminal type it was looking for,
       not while searching.

       In summary, a termcap entry that is longer than 1023 bytes
       can  cause,  on  various combinations of termcap libraries
       and applications, a  core  dump,  warnings,  or  incorrect
       operation.   If  it's too long even before "tc" expansion,
       it will have this effect even for users of some other ter-
       minal  types and users whose TERM variable does not have a
       termcap entry.

       When in -C (translate to termcap) mode, the ncurses imple-
       mentation  of tic(1) issues warning messages when the pre-
       tc length of a termcap translation is too  long.   The  -c
       (check)  option  also checks resolved (after tc expansion)

   Binary Compatibility
       It is not wise to count on portability of binary  terminfo
       entries  between commercial UNIX versions.  The problem is
       that there are at least two versions  of  terminfo  (under
       HP-UX and AIX) which diverged from System V terminfo after
       SVr1, and have added extension capabilities to the  string
       table  that  (in  the binary format) collide with System V
       and XSI Curses extensions.

       Some SVr4 curses  implementations,  and  all  previous  to
       SVr4, don't interpret the %A and %O operators in parameter

       SVr4/XPG4 do not specify whether  msgr  licenses  movement
       while  in an alternate-character-set mode (such modes may,
       among other things, map CR and NL to characters that don't


TERMINFO(5)                File Formats               TERMINFO(5)

       trigger   local   motions).   The  ncurses  implementation
       ignores msgr in ALTCHARSET mode.  This raises  the  possi-
       bility  that  an  XPG4  implementation making the opposite
       interpretation may need terminfo entries made for  ncurses
       to have msgr turned off.

       The  ncurses  library handles insert-character and insert-
       character modes in a slightly non-standard way in order to
       get better update efficiency.  See the Insert/Delete Char-
       acter subsection above.

       The  parameter  substitutions  for  set_clock   and   dis-
       play_clock  are  not  documented in SVr4 or the XSI Curses
       standard.  They are deduced from the documentation for the
       AT&T 505 terminal.

       Be  careful  assigning  the kmous capability.  The ncurses
       wants to interpret it as KEY_MOUSE, for use  by  terminals
       and  emulators  like  xterm that can return mouse-tracking
       information in the keyboard-input stream.

       Different commercial ports of terminfo and curses  support
       different  subsets of the XSI Curses standard and (in some
       cases) different extension sets.  Here is a summary, accu-
       rate as of October 1995:

       SVR4, Solaris, ncurses -- These support all SVr4 capabili-

       SGI --  Supports  the  SVr4  set,  adds  one  undocumented
       extended string capability (set_pglen).

       SVr1,  Ultrix -- These support a restricted subset of ter-
       minfo capabilities.  The booleans end with  xon_xoff;  the
       numerics  with  width_status_line;  and  the  strings with

       HP/UX -- Supports  the  SVr1  subset,  plus  the  SVr[234]
       numerics num_labels, label_height, label_width, plus func-
       tion keys 11 through 63,  plus  plab_norm,  label_on,  and
       label_off, plus some incompatible extensions in the string

       AIX -- Supports the SVr1 subset,  plus  function  keys  11
       through  63,  plus  a  number of incompatible string table

       OSF -- Supports both the SVr4 set and the AIX  extensions.

       /usr/share/terminfo.db   file containing terminal descrip-
                                tions on OpenBSD

       /usr/share/terminfo/?/*  files     containing     terminal


TERMINFO(5)                File Formats               TERMINFO(5)

                                descriptions on other systems

       cap_mkdb(1), tic(1M), curses(3), printf(3), term(5).

       Zeyd  M.  Ben-Halim,  Eric  S.  Raymond, Thomas E. Dickey.
       Based on pcurses by Pavel Curtis.