EQN(1) General Commands Manual EQN(1)
delim $$
NAME
eqn, neqn, checkeq  typeset mathematics
SYNOPSIS
eqn [ dxy ] [ pn ] [ sn ] [ fn ] [ file ] ...
checkeq [ file ] ...
DESCRIPTION
Eqn is a troff(1) preprocessor for typesetting mathematics on a Graphic
Systems phototypesetter, neqn on terminals. Usage is almost always
eqn file ...  troff
neqn file ...  nroff
If no files are specified, these programs reads from the standard
input. A line beginning with `.EQ' marks the start of an equation; the
end of an equation is marked by a line beginning with `.EN'. Neither
of these lines is altered, so they may be defined in macro packages to
get centering, numbering, etc. It is also possible to set two charac
ters as `delimiters'; subsequent text between delimiters is also
treated as eqn input. Delimiters may be set to characters x and y with
the commandline argument dxy or (more commonly) with `delim xy'
between .EQ and .EN. The left and right delimiters may be identical.
Delimiters are turned off by `delim off'. All text that is neither
between delimiters nor between .EQ and .EN is passed through untouched.
The program checkeq reports missing or unbalanced delimiters and
.EQ/.EN pairs.
Tokens within eqn are separated by spaces, tabs, newlines, braces, dou
ble quotes, tildes or circumflexes. Braces {} are used for grouping;
generally speaking, anywhere a single character like x could appear, a
complicated construction enclosed in braces may be used instead. Tilde
~ represents a full space in the output, circumflex ^ half as much.
Subscripts and superscripts are produced with the keywords sub and sup.
Thus x sub i makes $x sub i$, a sub i sup 2 produces $a sub i sup 2$,
and e sup {x sup 2 + y sup 2} gives $e sup {x sup 2 + y sup 2}$.
Fractions are made with over: a over b yields $a over b$.
sqrt makes square roots: 1 over sqrt {ax sup 2 +bx+c} results in $1
over sqrt {ax sup 2 +bx+c}$ .
The keywords from and to introduce lower and upper limits on arbitrary
things: $lim from {n> inf} sum from 0 to n x sub i$ is made with lim
from {n> inf } sum from 0 to n x sub i.
Left and right brackets, braces, etc., of the right height are made
with left and right: left [ x sup 2 + y sup 2 over alpha right ] ~=~1
produces $left [ x sup 2 + y sup 2 over alpha right ] ~=~1$. The right
clause is optional. Legal characters after left and right are braces,
brackets, bars, c and f for ceiling and floor, and "" for nothing at
all (useful for a rightsideonly bracket).
Vertical piles of things are made with pile, lpile, cpile, and rpile:
pile {a above b above c} produces $pile {a above b above c}$. There
can be an arbitrary number of elements in a pile. lpile leftjusti
fies, pile and cpile center, with different vertical spacing, and rpile
right justifies.
Matrices are made with matrix: matrix { lcol { x sub i above y sub 2 }
ccol { 1 above 2 } } produces $matrix { lcol { x sub i above y sub 2 }
ccol { 1 above 2 } }$. In addition, there is rcol for a rightjusti
fied column.
Diacritical marks are made with dot, dotdot, hat, tilde, bar, vec,
dyad, and under: x dot = f(t) bar is $x dot = f(t) bar$, y dotdot bar
~=~ n under is $y dotdot bar ~=~ n under$, and x vec ~=~ y dyad is $x
vec ~=~ y dyad$.
Sizes and font can be changed with size n or size +n, roman, italic,
bold, and font n. Size and fonts can be changed globally in a document
by gsize n and gfont n, or by the commandline arguments sn and fn.
Normally subscripts and superscripts are reduced by 3 point sizes from
the previous size; this may be changed by the commandline argument
pn.
Successive display arguments can be lined up. Place mark before the
desired lineup point in the first equation; place lineup at the place
that is to line up vertically in subsequent equations.
Shorthands may be defined or existing keywords redefined with define:
define thing % replacement % defines a new token called thing which
will be replaced by replacement whenever it appears thereafter. The %
may be any character that does not occur in replacement.
Keywords like sum ( sum ) int ( int ) inf ( inf ) and shorthands like
>= (>=) > (>), and != ( != ) are recognized. Greek letters are
spelled out in the desired case, as in alpha or GAMMA. Mathematical
words like sin, cos, log are made Roman automatically. Troff(1) four
character escapes like \(bs () can be used anywhere. Strings enclosed
in double quotes "..." are passed through untouched; this permits key
words to be entered as text, and can be used to communicate with troff
when all else fails.
SEE ALSO
troff(1), tbl(1), ms(7), eqnchar(7)
B. W. Kernighan and L. L. Cherry, Typesetting MathematicsUser's Guide
J. F. Ossanna, NROFF/TROFF User's Manual
BUGS
To embolden digits, parens, etc., it is necessary to quote them, as in
`bold "12.3"'.
2/22/74 EQN(1)
